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The method of maximum overlap, often applied to the problem of basis set reduction, is formulated in 
terms of weighted least squares with orthogonality restrictions. An analytical solution for the linear 
parameters of the reduced set is given. In this form, the method is a general and efficient scheme for 
reducing basis sets. As an application, orthogonal radial wavefunctions of the ST0 type have been 
obtained for the 3d transition metal atoms and ions by simulation of the high-quality sets of Clementi 
and Roetti. The performance of the reduction has been evaluated by examining several one- and two- 
electron interactions. Results of these tests reveal that the new functions are highly accurate simula- 
tions of the reference AO’s. They appear to be appropriate for molecular and solid state calcula- 
tiOIIS. 8 1986 Academic Press, Inc. 

Introduction 

Most quantum-mechanical calculations 
on atoms and molecules are usually carried 
out within the framework of an expansion 
method. The one-electron orbitals are ex- 
pressed in terms of a basis set and the ex- 
pansion coefficients are chosen by minimi- 
zation of the total energy (I). Several 
high-quality Slater-type (2) and Gaussian- 
type (3) bases are available. However, in 
problems with a large number of electrons 
or in processes demanding repetitive calcu- 
lations, smaller basis sets are needed. 

On the other hand, many molecular and 
solid state calculations are carried out by 
using a basis set of atomic orbitals instead 
of one of primitive STOs or GTOs. This 
choice has several advantages, including 
the automatic one-center orthogonality of 

the AO’s and an easy correlation between 
the molecular results and the separated-at- 
oms description. 

Atomic orbitals useful for molecular and 
solid state calculations, i.e., expanded over 
practical, small bases of STOs or GTOs, 
can be prepared by minimizing the atomic 
total energy (4) but they produce molecular 
results notably separated from those ob- 
tained with better bases (5). An interesting 
alternative approach is to prepare practical 
AO’s (expanded over a small basis set) that 
accurately reproduce the desired character- 
istics of a given set of high-quality AO’s 
(expanded over a large basis set). This idea 
was fruitfully applied by Richardson et al. 
(6) to obtaining practical (ST0 25) 3d AO’s 
for the first transition series, by maximizing 
their overlap with the high-quality 45 AO’s 
of Watson (2~). Later, Kalman discussed 
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some algebraic properties of this approach 
(7). 

Recently, obtaining practical orbitals has 
been considered again by Adamowicz (8), 
who proposed a different reduction scheme 
based on the minimization of the sum of 
differences of the orbital energies in the two 
bases. It is clear that for a given basis set, 
taken as reference, different sets of practi- 
cal bases can be generated by selecting dif- 
ferent requirements. 

We are interested in practical AO’s that 
reproduce in a satisfactory manner the 
characteristics of the high-quality basis sets 
presently available. For some applications, 
such as molecular calculations within the 
valence shell, we want an optimum repro- 
duction of the valence segment of the refer- 
ence basis. In other cases, one might be 
more interested in the inner part of the 
wavefunction. A useful reduction method 
should be able to deal with such different 
situations easily. In this context, we have 
found that the methods of Kalman (7) and 
Adamowicz (8) are particular cases of the 
more general and well-known procedure of 
maximizing the overlap between the refer- 
ence set and the reduced one by means of 
weighted least squares with constraining 
conditions. The arbitrary weighting factors 
control the characteristics of the new set. 

In this paper we present a general formu- 
lation of the maximum-overlap method and 
give the analytical solution for the linear 
parameters. Using this formulation we have 
obtained approximate AO’s for the 3d at- 
oms and ions. The multi-5 bases of Cle- 
menti and Roetti (26) have been taken as 
reference. Furthermore, we present numer- 
ical results that show the high performance 
of the reduction method and the accuracy 
of the approximate radial functions. 

The Method 

Let {I,$} be a known orthonormal set of 
orbitals. Although it is not required in the 

present method, the I,!$‘s can be an accurate 
approximation of the Hartree-Fock solu- 
tion of an atomic or molecular system and 
can be expressed in terms of a known basis 
set hp}: 

I@ = $ xi cg 

or in matrix form: 

a/P = xv. 

(1) 

We want to find another orthonormal set 
{$i} that maximizes the overlap integrals Oii 
= ($iJ$p). These $i’s can also be expanded 
in terms of a smaller basis set {xi}: 

$i = $ XkCki (P < P,) or 

# = ,c. (2) 

The problem is then to find the basis 
functions xi and the matrix C that maximize 
the diagonal elements of the matrix 0 with 
the condition et+ = I, the unit matrix. The 
constraints ($il$j} = 6ij operate only when 
Jli and $j have the same total symmetry. 
Therefore, if + can be divided in blocks of 
different symmetry the problem can be 
solved within each block. 

First, we will show that the C matrix can 
be found analytically, provided the x vector 
is known. Later on, we shall discuss the 
obtention of x. To find C we use Lagrange’s 
method of undetermined multipliers. The 
ith Lagrangian function to be maximized 
will be 

Li = Wioii + 2 A.si(($il$,) - 6;s) (3) s=l 
where wi are weighting factors, N the num- 
ber of $i orbitals, h,i the Lagrange multipli- 
ers, and 6is the Kronecker symbol. From 
(tILilah,i) = 0 we obtain (Jlilh) = 6i.y or, in 
matrix form 

ctsc = I (4) 
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where S = xtx. Furthermore, we have 

dLi aOii 
z&=WiaCki + i h,i T = 0. (5) 

s=l 

If we define the overlap matrix 

B = xtt,If’ (6) 

Eq. (5) transforms to 

WiBki + 2hii i C[iSk/ 
/=I 

+ i A,i fj C,,yS/q = 0. (7) 
s#i r=I 

This equation can be written in the form 
N P 

WiBki = C r)si x CrsSkr 
s=l r=l 

(8) 

where the new set of multipliers q,i = -(l 
+ 6,i)hsi has been introduced. Considering 
all values of k we can write WiBi = SCqi, 
where Bi and r)i are column vectors: (Bi)k = 
Bki , (qi)k = nki . The IXXllt Of maximizing all 
the Lj functions can be written in the form 

SCq = Bw (9) 

where (q)ij = qij and (B)ij = Bij. 
Equations (9) and (4) must be simulta- 

neously satisfied. Note that q is a symmet- 
ric matrix because the condition ($il$j) = 6ij 
is equivalent to ($j/$i) = Sji. Since the mul- 
tipliers are real numbers, q is Hermitian. 

From Eqs. (4) and (9) we find that 9 = 
CtBw and after left-multiplying Eq. (9) by 
wtBtS-’ we have 

q2 = pq = wtBtS-‘Bw. (10) 

Diagonalization of q2 gives (9) 

Ut$U = d = d”2dl”. (11) 

From this equation we obtain r) as 

q = Ud1’2Ut. (12) 

Finally, left-multiplying Eq. (9) by S-l 
and right-multiplying by q-i we have 

Equation (13) is the wanted analytical so- 
lution for the linear coefficients. 

The orbital exponents of the basis x, &, 
must be found by minimizing the functional 

F(<k) = $ wi(l - ($il$?)) (14) 

where Wi are weighting factors. Numerical 
procedures are required for the obtention of 
the &‘s, since F(<k) is a non-linear and too 
involved function of these parameters. In 
the applications quoted in the next Section, 
the simple method of Roothaan and Bagus 
(10) has given satisfactory results, in com- 
plete agreement with other, generally more 
efficient, schemes (II). 

Let us now summarize the main steps of 
the present method: 

1. Selection of a trial set of &‘s. 
2. Calculation of S = xtx, B = xt@ and 

S-‘. 
3. Calculation of q2, Eq. (lo), and 

diagonalization, having U and d, Eq. (11). 
4. Obtention of q, Eq. (12), and q-l. 
5. Calculation of C, Eq. (13). 

Steps l-5 are repeated until the <k’s mini- 
mize F({k) in Eq. (14). The x and C matri- 
ces define the final orbitals. 

If the basis set x is fixed, steps l-5 must 
be executed only once, and the matrix C is 
the wanted result. In this sense, the present 
scheme could also be applied as an ortho- 
gonalization procedure, the initial and final 
functions having maximum overlap. 

Practical Atomic Wave Functions for the 
3d Elements 

Following the method described in the 
previous section we have found the approx- 
imate AO’s for the 3d atoms, in their 
ground state, collected in Table I. Multi-Z; 
basis sets of Clementi and Roetti (2b) have 
been used as reference. All calculations 

C = S-‘Bwq-‘. (13) have been performed with weighting fac- 
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TABLE I 

APPROXIMATE AO’s FORTHE 3d TRANSITION METAL ATOMS IN THEGROUND STATE 
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TABLE Ia 

APPROXIMATE AO’s FOR THE MONOPOSITIVE 3d IONS IN THE GROUND STATE 
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TABLE Ib 

APPROXIMATE AO’s FOR THE DIPOSITIVE 3d IONS IN THE GROUND STATE 

tors Wi and Wi (Eqs. (3) and (14), respec- The simulation process has been accom- 
tively) equal to unity. Results for mono-, plished satisfactorily, as the overlap inte- 
di-, and tripositive ions appear in Tables Ia, grals between practical and reference AO’s 
Ib, and Ic, respectively. show. Such integrals, averaged over the pe- 
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TABLE Ic 

APPROXIMATE AO’s FOR THE TRIP~SITIVE 3d IONS IN THE GROUND STATE 

397 

riod, appear in Table II. They are always The optimum orbital exponents show a 
greater than 0.999. Valence AO’s 3p and 4s linear correlation with the nuclear charge 
are particularly well reproduced, with over- Z. This correlation, particularly good for 
laps larger than 0.99995 and 0.9998, respec- exponents of the inner STOs, indicates 
tively. As observed by Richardson et al. that the regularity of the Hartree-Fock 
(6), the quality of this simulation increases AO’s with Z is maintained in the reduced 
with the oxidation state. bases. 
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TABLE II 

VALUES OF THE OVERLAP INTEGRALS, AVERAGED 
OVER THE PERIOD, BETWEEN THE APPROXIMATE 

AND REFERENCE AO’s 

A0 MUU M(II1) MW’) 

IS 
2s 
3s 
4s 

0.99994 
0.99954 
0.99964 
0.99990 

2P 0.99972 
3P 0.99997 

3d 0.99922 

0.99995 0.99995 0.99996 
0.99955 0.99957 0.99963 
0.99975 0.99978 0.99973 
0.99995 - - 

0.99972 0.99974 0.99978 
0.99997 0.99997 0.99996 

0.99923 0.99959 0.99979 

Evaluation of the Reduced Bases 

3d Functions 

Besides the overlap integrals in Table II, 
we will present the results of two different 
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FIG. 1. Relative errors in the calculation of the ex- 
pectation values (3dlrn13d), n = -2, 1, 2, 3. Note: 
Subscripts x and o stand for reduced and reference 
AO’s, respectively. 

tests on the quality of the simulation pro- 
cess for the 3d AO’s. The first one refers to 
the one-electron integrals (rn) (n = -2, I, 2, 
and 3). In Fig. 1 we plot the relative error 
(W, - b-%W%~ where subscripts x,o 
refer to practical and reference AO’s, re- 
spectively. 

The errors associated with the operators 
re2 and r3 measure the discrepancies be- 
tween reduced and reference AO’s in the 
regions near to the nucleus and far apart 
from it, respectively. When the criterion of 
maximum overlap is followed, these re- 
gions are less accurately reproduced than 
the segment around the maximum of the 
radial distribution. Accordingly, the rela- 
tive error of(r) is noticeably smaller. Peaks 
at the positions of Cr and Cu in Fig. 1 corre- 
spond to changes in electronic configura- 
tion (4s23dn --, 4s13dn+‘). Apart from these 
peaks, the relative errors tend to increase 
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FIG. 2. Relative errors in (3dlrn/3d) versus the oxi- 
dation state of the manganese ions. 
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TABLE III 

LOWER d-d ELECTRONIC TRANSITIONS (cm-‘) OF 
V(W), Cr(IV), AND Fe(IV), AS COMPARED WITH 

THE REFERENCE BASIS (FIRST Row) AND THE 
REDUCED BASIS (SECOND Row) 

V(W) 3dZ-3F Cr(IV) 3d’-4F Fe(W) 3dS-% 

Transition AE Transition AE Transition BE 

‘F + ID 13,782 4F + 4P 17,653 % - ‘G 37,934 
13,812 17,702 38,078 
10,536 13,758 32.281 

- ‘G 21,498 - 2P 23,824 -+ 4P 43.856 

21,546 23,889 44.025 
17.%8 18,919 35,297 

+ ‘P 16.534 -% 17,940 -+ ‘D 47.186 

16.573 17,988 47.363 
12.776 14,699 38,865 

- ‘S 53,198 - *H 23,824 + ‘F 63.681 
53,313 23,889 63,921 
42,039 20,658 52,715 

+ ZD 25,928 -+ 21 54.086 
25,998 54,294 
20,112 47,085 

+ *F 41,478 + IH 66,617 
41,591 66,873 
33,899 56,229 

Note. Third-row entries are experimental values, Ref. (12a) for V(W) 
and Cr(IV), and Ref. (I2b) for Fe(W). 

slowly from left to right in the period. Fur- 
thermore, these relative errors clearly de- 
crease when the oxidation number in- 
creases. This effect is depicted in Fig. 2. 

The second test refers to the behavior of 
the d-d repulsion integrals. As examples, 
we present in Table III the lower d-d tran- 
sition energies of the V(IV), Cr(IV), and 

TABLE IV 

KINETIC PLUS NUCLEAR ATTRACTION ENERGY OF 

THE AO’s OF THE Fe ATOM (4s23d6-5D STATE 
(ATOMIC UNITS) 

Atomic orbital This work Clementi-RoettiO Difference 

IS -337.62635 -337.58483 0.04152 
2s -82.54069 -82.69238 -0.15169 
3s -31.81308 -31.85502 0.05194 
4s -9.33421 -9.35900 0.02479 
2P -81.81697 -82.01925 0.20228 
3P -29.96868 -29.95723 -0.01145 
3d -24.76088 -24.86904 0.10816 

a Ref. (2b). 

Fe(IV) ions, computed with the AO’s re- 
ported in this work as well as with the cor- 
responding sets of Clementi and Roetti. 
The differences are always very small: 
smaller than 120 cm-’ for V(IV) and Cr(IV), 
and 260 cm-’ for Fe(N). These discrepan- 
cies are negligible when compared with the 
separation between the theoretical spec- 
trum (reference basis) and the observed one 
(22). Accordingly, we can say that the re- 
duced basis sets reproduce the theoretical 
spectrum faithfully. 

s and p Functions 

In Table IV we present the values of T + 
V (kinetic plus nuclear attraction energy), 
computed with the reduced and reference 
bases, for the AO’s of the Fe atom in the 
ground state. The worse cases correspond 
to the 2s and 2p AO’s. Valence 3p and 4s 
AO’s are very well reproduced. 

In Table V we collect a set of interaction 
energies of pairs of electrons, as defined by 
Slater (23). They correspond to valence- 
valence electronic repulsions for the Fe 
atom in the ground state. The performance 
of the reduced set is very good, particularly 
in the case of the 43-4s repulsion. Analo- 
gous results are found for other elements. 
The performance is still better for ions. 

All these results show that the reduced 
basis sets presented in this paper are very 
good approximations to the high-quality ba- 

TABLE V 

SPHERICALLY AVERAGED INTERELECTRONIC 

INTERACTIONS FOR THE Fe ATOM (4s23d6-5D 
STATE) (ATOMIC UNITS) 

Interaction This work Clementi-Roetti Difference 

(3s,3d 1.10037 1.09979 0.00058 
(4s,4d 0.27816 0.27814 0.00002 
(3P,3P) 1.00265 1.00252 o.ooo13 
(3d.W 0.84689 0.84568 0.00121 
(3P,4S) 0.36113 0.36164 -0.00051 
(3&W 0.35503 0.35538 -0.00035 
(3.00 0.89341 0.89379 -0.00038 
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ses of Clementi and Roetti. They have a 
size appropriate for molecular and solid 
state calculations involving 3d atoms and 
ions. Moreover, the reduction method pre- 
sented here seems to work very well. It 
could be a useful tool in the problem of re- 
ducing atomic or molecular basis sets. 
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