The Maximum Overlap Method: A General and Efficient Scheme for Reducing Basis Sets. Application to the Generation of Approximate AO's for the 3d Transition Metal Atoms and Ions

E. FRANCISCO, L. SEIJO, and L. PUEYO
Departamento de Química Física, Facultad de Química. Universidad de Oviedo, 33007 Oviedo, Spain

Received June 27, 1985; in revised form November 5, 1985

Abstract

The method of maximum overlap, often applied to the problem of basis set reduction, is formulated in terms of weighted least squares with orthogonality restrictions. An analytical solution for the linear parameters of the reduced set is given. In this form, the method is a general and efficient scheme for reducing basis sets. As an application, orthogonal radial wavefunctions of the STO type have been obtained for the $3 d$ transition metal atoms and ions by simulation of the high-quality sets of Clementi and Roetti. The performance of the reduction has been evaluated by examining several one- and twoelectron interactions. Results of these tests reveal that the new functions are highly accurate simulations of the reference AO's. They appear to be appropriate for molecular and solid state calculations. © 1986 Academic Press, Inc.

Introduction

Most quantum-mechanical calculations on atoms and molecules are usually carried out within the framework of an expansion method. The one-electron orbitals are expressed in terms of a basis set and the expansion coefficients are chosen by minimization of the total energy (1). Several high-quality Slater-type (2) and Gaussiantype (3) bases are available. However, in problems with a large number of electrons or in processes demanding repetitive calculations, smaller basis sets are needed.

On the other hand, many molecular and solid state calculations are carried out by using a basis set of atomic orbitals instead of one of primitive STOs or GTOs. This choice has several advantages, including the automatic one-center orthogonality of
the AO's and an easy correlation between the molecular results and the separated-atoms description.

Atomic orbitals useful for molecular and solid state calculations, i.e., expanded over practical, small bases of STOs or GTOs, can be prepared by minimizing the atomic total energy (4) but they produce molecular results notably separated from those obtained with better bases (5). An interesting alternative approach is to prepare practical AO's (expanded over a small basis set) that accurately reproduce the desired characteristics of a given set of high-quality AO's (expanded over a large basis set). This idea was fruitfully applied by Richardson et al. (6) to obtaining practical (STO 2弓) 3d AO's for the first transition series, by maximizing their overlap with the high-quality 4ζ AO's of Watson (2a). Later, Kalman discussed
some algebraic properties of this approach (7).

Recently, obtaining practical orbitals has been considered again by Adamowicz (8), who proposed a different reduction scheme based on the minimization of the sum of differences of the orbital energies in the two bases. It is clear that for a given basis set, taken as reference, different sets of practical bases can be generated by selecting different requirements.

We are interested in practical AO's that reproduce in a satisfactory manner the characteristics of the high-quality basis sets presently available. For some applications, such as molecular calculations within the valence shell, we want an optimum reproduction of the valence segment of the reference basis. In other cases, one might be more interested in the inner part of the wavefunction. A useful reduction method should be able to deal with such different situations easily. In this context, we have found that the methods of Kalman (7) and Adamowicz (8) are particular cases of the more general and well-known procedure of maximizing the overlap between the reference set and the reduced one by means of weighted least squares with constraining conditions. The arbitrary weighting factors control the characteristics of the new set.

In this paper we present a general formulation of the maximum-overlap method and give the analytical solution for the linear parameters. Using this formulation we have obtained approximate AO's for the $3 d$ atoms and ions. The multi- ζ bases of Clementi and Roetti ($2 b$) have been taken as reference. Furthermore, we present numerical results that show the high performance of the reduction method and the accuracy of the approximate radial functions.

The Method

Let $\left\{\psi_{i}^{\circ}\right\}$ be a known orthonormal set of orbitals. Although it is not required in the
present method, the ψ_{i}^{o} 's can be an accurate approximation of the Hartree-Fock solution of an atomic or molecular system and can be expressed in terms of a known basis set $\left\{\chi_{i}{ }^{\circ}\right\}$:

$$
\begin{equation*}
\psi_{i}^{\mathrm{o}}=\sum_{k}^{P_{0}} \chi_{k}^{\mathrm{o}} C_{k i}^{\circ} \tag{1}
\end{equation*}
$$

or in matrix form:

$$
\psi^{0}=\chi^{0} \mathbf{C}^{0}
$$

We want to find another orthonormal set $\left\{\psi_{i}\right\}$ that maximizes the overlap integrals $O_{i i}$ $=\left\langle\psi_{i} \mid \psi_{i}^{\circ}\right\rangle$. These ψ_{i}^{\prime} 's can also be expanded in terms of a smaller basis set $\left\{\chi_{i}\right\}$:
$\psi_{i}=\sum_{k}^{P} \chi_{k} C_{k i} \quad\left(P<P_{\mathbf{o}}\right) \quad$ or

$$
\begin{equation*}
\boldsymbol{\psi}={ }_{x} \mathbf{C} \tag{2}
\end{equation*}
$$

The problem is then to find the basis functions χ_{i} and the matrix \mathbf{C} that maximize the diagonal elements of the matrix 0 with the condition $\boldsymbol{\psi} \dagger \boldsymbol{\psi}=\mathbf{I}$, the unit matrix. The constraints $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$ operaie only when ψ_{i} and ψ_{j} have the same total symmetry. Therefore, if ψ can be divided in blocks of different symmetry the problem can be solved within each block.

First, we will show that the \mathbf{C} matrix can be found analytically, provided the $\boldsymbol{\chi}$ vector is known. Later on, we shall discuss the obtention of $\boldsymbol{\chi}$. To find \mathbf{C} we use Lagrange's method of undetermined multipliers. The i th Lagrangian function to be maximized will be

$$
\begin{equation*}
L_{i}=w_{i} O_{i i}+\sum_{s=1}^{N} \lambda_{s i}\left(\left\langle\psi_{i} \mid \psi_{s}\right\rangle-\delta_{i s}\right) \tag{3}
\end{equation*}
$$

where w_{i} are weighting factors, N the number of ψ_{i} orbitals, $\lambda_{s i}$ the Lagrange multipliers, and $\delta_{i s}$ the Kronecker symbol. From $\left(\partial L_{i} / \partial \lambda_{s i}\right)=0$ we obtain $\left\langle\psi_{i} \mid \psi_{s}\right\rangle=\delta_{i s}$ or, in matrix form

$$
\begin{equation*}
\mathbf{C} \dagger \mathbf{S C}=\mathbf{I} \tag{4}
\end{equation*}
$$

where $\mathbf{S}=\boldsymbol{\chi} \dagger \boldsymbol{\chi}$. Furthermore, we have

$$
\begin{equation*}
\frac{\partial L_{i}}{\partial C_{k i}}=w_{i} \frac{\partial O_{i i}}{\partial C_{k i}}+\sum_{s=1}^{N} \lambda_{s i} \frac{\partial\left\langle\psi_{i} \mid \psi_{s}\right\rangle}{\partial C_{k i}}=0 . \tag{5}
\end{equation*}
$$

If we define the overlap matrix

$$
\begin{equation*}
\mathbf{B}=\mathbf{\chi}^{\dagger} \psi^{0} \tag{6}
\end{equation*}
$$

Eq. (5) transforms to

$$
\begin{align*}
w_{i} B_{k i}+2 \lambda_{i i} \sum_{l=1}^{P} & C_{l i} S_{k l} \\
& +\sum_{s \neq i}^{N} \lambda_{s i} \sum_{r=1}^{P} C_{r s} S_{k r}=0 . \tag{7}
\end{align*}
$$

This equation can be written in the form

$$
\begin{equation*}
w_{i} B_{k i}=\sum_{s=1}^{N} \eta_{s i} \sum_{r=1}^{P} C_{r s} S_{k r} \tag{8}
\end{equation*}
$$

where the new set of multipliers $\eta_{s i}=-(1$ $\left.+\delta_{s i}\right) \lambda_{s i}$ has been introduced. Considering all values of k we can write $w_{i} \mathbf{B}_{i}-\mathbf{S C} \boldsymbol{\eta}_{i}$, where \mathbf{B}_{i} and $\boldsymbol{\eta}_{i}$ are column vectors: $\left(\mathbf{B}_{i}\right)_{k}=$ $B_{k i},\left(\boldsymbol{\eta}_{i}\right)_{k}=\eta_{k i}$. The result of maximizing all the L_{j} functions can be written in the form

$$
\begin{equation*}
\mathbf{S C} \boldsymbol{\eta}=\mathbf{B} \mathbf{w} \tag{9}
\end{equation*}
$$

where $(\boldsymbol{\eta})_{i j}=\eta_{i j}$ and $(\mathbf{B})_{i j}=B_{i j}$.
Equations (9) and (4) must be simultaneously satisfied. Note that $\boldsymbol{\eta}$ is a symmetric matrix because the condition $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$ is equivalent to $\left\langle\psi_{j} \mid \psi_{i}\right\rangle=\delta_{j i}$. Since the multipliers are real numbers, $\boldsymbol{\eta}$ is Hermitian.

From Eqs. (4) and (9) we find that $\boldsymbol{\eta}=$ $\mathbf{C} \dagger \mathbf{B w}$ and after left-multiplying Eq. (9) by $\mathbf{w} \dagger \mathbf{B} \dagger \mathbf{S}^{-1}$ we have

$$
\begin{equation*}
\boldsymbol{\eta}^{2}=\boldsymbol{\eta} \boldsymbol{\eta}=\mathbf{w}+\mathbf{B}+\mathbf{S}^{-1} \mathbf{B} \mathbf{w} . \tag{10}
\end{equation*}
$$

Diagonalization of $\boldsymbol{\eta}^{2}$ gives (9)

$$
\begin{equation*}
\mathbf{U} \dagger \boldsymbol{\eta}^{2} \mathbf{U}=\mathbf{d}=\mathbf{d}^{1 / 2} \mathbf{d}^{1 / 2} \tag{11}
\end{equation*}
$$

From this equation we obtain $\boldsymbol{\eta}$ as

$$
\begin{equation*}
\boldsymbol{\eta}=\mathbf{U} \mathbf{d}^{1 / 2} \mathbf{U} \dagger . \tag{12}
\end{equation*}
$$

Finally, left-multiplying Eq. (9) by \mathbf{S}^{-1} and right-multiplying by $\boldsymbol{\eta}^{-1}$ we have

$$
\begin{equation*}
\mathbf{C}=\mathbf{S}^{-1} \mathbf{B} \mathbf{w} \boldsymbol{\eta}^{-1} . \tag{13}
\end{equation*}
$$

Equation (13) is the wanted analytical solution for the linear coefficients.

The orbital exponents of the basis $\boldsymbol{\chi}, \zeta_{k}$, must be found by minimizing the functional

$$
\begin{equation*}
F\left(\zeta_{k}\right)=\sum_{i=1}^{N} W_{i}\left(1-\left\langle\psi_{i} \mid \psi_{i}^{\circ}\right\rangle\right) \tag{14}
\end{equation*}
$$

where W_{i} are weighting factors. Numerical procedures are required for the obtention of the ζ_{k} 's, since $F\left(\zeta_{k}\right)$ is a non-linear and too involved function of these parameters. In the applications quoted in the next Section, the simple method of Roothaan and Bagus (10) has given satisfactory results, in complete agreement with other, generally more efficient, schemes (11).

Let us now summarize the main steps of the present method:

1. Selection of a trial set of ζ_{k} 's.
2. Calculation of $\mathbf{S}=\boldsymbol{\chi}^{\dagger} \boldsymbol{\chi}, \mathbf{B}=\boldsymbol{\chi}^{\dagger} \boldsymbol{\psi}^{0}$ and \mathbf{S}^{-1}.
3. Calculation of $\boldsymbol{\eta}^{2}$, Eq. (10), and diagonalization, having \mathbf{U} and d, Eq. (11).
4. Obtention of $\boldsymbol{\eta}$, Eq. (12), and $\boldsymbol{\eta}^{-1}$.
5. Calculation of C, Eq. (13).

Steps $1-5$ are repeated until the ζ_{k} 's minimize $F\left(\zeta_{k}\right)$ in Eq. (14). The χ and \mathbf{C} matrices define the final orbitals.
If the basis set χ is fixed, steps $1-5$ must be executed only once, and the matrix \mathbf{C} is the wanted result. In this sense, the present scheme could also be applied as an orthogonalization procedure, the initial and final functions having maximum overlap.

Practical Atomic Wave Functions for the 3d Elements

Following the method described in the previous section we have found the approximate AO's for the $3 d$ atoms, in their ground state, collected in Table I. Multi- ζ basis sets of Clementi and Roetti (2b) have been used as reference. All calculations have been performed with weighting fac-

TABLE I
Approximate AO's for the 3d Transition Metal Atoms in the Ground State

$\mathrm{Sc}(\mathrm{I}) 4 \mathrm{~s}(2) 3 \mathrm{~d}(1)-{ }^{2} \mathrm{D}$												
5 STO	Expn.	1 s	25	3 s	4 s	570	Exph.	2 p	3p	570	Expn.	3 d
$1 s$	20.25135	. 9995821	-. 3553464	. 1351133	-. 0319247	$2 p$	8.45936	. 9692898	-. 3455277	3 d	3.49640	. 5217980
2 s	7.57916	. 0012352	1.0640957	-. 4689656	. 1127677	3 p	3.86183	. 0912865	. 5202415	3 d	1.46828	. 6210154
3 s	3.47789	. 0003048	-. 0085454	1.0807737	-. 2934964	3 p	2.49266	-. 0388370	. 5658785			
45	1.57703	-. 0002487	. 0050808	. 0477761	. 4917817							
45	. 92719	. 0001587	-. 0027048	-.0168758	. 6130821							
STO	Exph.	15	2 s	3 s	4 S	STO	Exple	20	30	STO	Expon.	3d
1 s	21.22433	. 9997931	-. 3593120	. 1387856	-. 0318112	2 p	8.95980	. 9700410	-. 3534851	3 d	3.93614	. 5194337
25	8.00480	. 0005833	1.0660508	-. 4786483	. 1116790	3	4.11453	. 0880974	. 5442180	3d	1.69765	. 6160065
3 s	3.70969	. 0005079	-. 0095213	1.0856067	-. 2855499	3p	2.65182	-.0369697	. 5449747			
45	1.64017	-. 00003269	, 0051023	. 0469499	. 5168417							
$4 s$. 95258	.0001982	-.0026818	-. 0168601	. 5900293							

V(I) $4 s(2) 3 d(3)-\frac{4}{F}$

STO	Evgr.	1 s	2 s	3 s	45	SIU	Exan.	2 p	3p	STO	Exym.	30
15	22.19826	. 9999918	$-.3628605$. 1418508	-. 0318241	20	9.45669	. 9710012	-. 3599484	3 d	4.28259	. 5285.397
2 s	8.42940	-. 0000199	1.0678664	-. 4864590	. 1110991	3p	4.35398	. 0846087	. 5722680	3d	1.85968	. 6054484
3 s	3.93871	. 0007043	-. 0105256	1.0885422	-. 2802616	30	2.79301	-. 0349819	. 5200450			
4 s	1.74011	-. 0004045	. 0053069	. 0474818	. 5025338							
4s	. 99516	. 0002453	-. 0027339	-. 0166455	. 6067734							

$C r(1) 45(1) 3 d(5)-{ }^{7} S$

5 Sm	Fsym.	19	25	3 E	45	STO	Excm.	2n	3 L	STO	Fxam.	H1
15	23.17292	1.0001804	-. 3665639	. 1427496	-. 0294802	2p	9.94327	. 9731054	-. 3608374	30	4.25230	. 5805679
2 s	8.86415	-.0005804	1.0691151	-. 4853917	. 1020439	3p	4.55151	. 0772856	. 6177829	3 d	1.68001	. 5809623
3 s	4.13446	. 0008705	-. 0100839	1.0861240	-. 2564492	30	2.82529	-. 0303269	. 4811284			
4 s	1.79681	-. 0004408	. 0048492	. 0534357	. 4607289							
45	. 99223	. 0002407	-. 0022226	-. 0181074	.6507192							
$\mathrm{Mn}(\mathrm{I})$	4s (2) $3 \mathrm{~d}(5)-{ }^{6} \mathrm{~S}$											
STO	Expn.	15	2 s	3 s	45	STO	Expr.	2 p	3 p	STO	Expn.	3 d
$1 s$	24.14714	1.0003564	-. 3691776	. 1466178	-.0310885	2 p	10.45069	. 9722877	-. 3698462	3 d	4.93752	. 5421265
2 s	9.28162	-. 0011000	1.0708098	-. 4973308	. 1073847	3p	4.84957	. 0790901	. 6070901	3d	2.15253	. 5912117
35	4.38084	. 0010407	-. 0114997	1.0935376	-. 2653683	3p	3.07671	-. 0315097	. 4905962			
4 s	1.88093	-. 0005018	. 0051805	. 0475602	. 5104822							
4 s	1.05182	. 0002798	-. 0026067	-. 0168250	. 6019573							
$\mathrm{Fe}(\mathrm{I}) \mathrm{4S}_{5}(2) 3 \mathrm{~d}(6)-{ }^{5} \mathrm{D}$												
510	Exqn.	1 s	2 s	3 s	45	S20	Expa.	2p	3p	STO	Expn.	3 d
$1 s$	25.12190	1.0005313	-. 3718948	. 1488512	-. 0310822	2p	10.94715	. 9728355	-. 3744856	3d	5.20238	. 5565098
2 s	9.70648	-. 0016084	1.0721634	-. 5026893	. 1068989	3p	5.09505	. 0769124	. 6234226	3d	2.22946	. 5818387
35	4.60471	. 0012008	-. 0120591	1.0958626	-. 2618205	3 p	3.22020	-. 0302014	. 4764066			
45	1.96575	-. 00005495	. 0052060	. 0474162	. 5105677							
4s	1.08746	. 0003042	-. 0025811	-. 0165644	. 6041016							

$\operatorname{CO}(1) 4 s(2) 3 \mathrm{~d}(7)-{ }^{4} F$

STO	Expn.	$1 s$	2 s	3 s	45	STO	Expn.	2 p	3 p	STO	Expn.	3 d
1 s	26.09709	1.0006921	-. 3744194	. 1507361	-. 0308612	2 p	11.44553	. 9730581	-. 3784978	3d	5.47142	. 5682698
2 s	10.13171	-.0020707	1.0733603	-. 5069385	. 1056816	3p	5.35768	. 0753343	. 6288716	3d	2,32233	. 5728601
$3 s$	4.82452	. 0013567	-.0124.304	1.0978002	-. 25688793	. $\mathrm{p}^{\text {p }}$	3.3754 .3	-.0790515	. 4779500			
4 s	2.03875	-. 0005789	. 0051578	. 0474283	. 5137749							
45	1.11741	. 0003177	-. 0025258	-. 0165835	. 6025909							

$\mathrm{Ni}(\mathrm{I}) 4 \mathrm{~s}(2) 3 \mathrm{~d}(8)-{ }^{3} \mathrm{~F}$

STO	Expan.	1 s	2 s	3 s	45	STO	Exgen.	2 L	3 p	STO	Expri.	3 l
1 s	27.07259	1.0008460	-. 3767298	. 1524309	-. 0306320	${ }^{2} \mathrm{p}$	11.93863	. 9737635	-. 3817178	3d	5.75944	. 5749325
2 s	10.55674	-. 0025069	1.0744575	-. 5105875	. 1044461	3 p	5.58584	. 0730729	. 6492790	3 d	2.42640	. 5682986
35	5.04312	. 0014801	-. 0127452	1.0993620	-. 2521739	3p	3.49597	-. 0277894	. 4545620			
4 s	2.11426	-. 0006181	. 0050980	. 0476677	. 5132650							
45	1.14835	. 0003491	-. 0024724	-. 0166652	. 6047041							

$\operatorname{Cu}(1) 4 s(1) 3 d(10)-{ }^{2} S$

STO	Expn.	15	2 s	35	4s	STO	Expn.	2p	3 p	STO	Exqn.	3 d
$1 s$	28.04513	1.0010099	-. 3798148	. 1522305	-. 0242754	2 p	12.42936	. 9747036	-. 3816597	3 d	5.71 .833	. 6167744
25	11.00585	-. 0029511	1.0747036	-. 5052684	. 0818631	3 p	5.81158	. 0693572	. 6665595	3d	2.22308	. 5486696
35	5.20749	. 0015310	-. 0104072	1.0998687	-. 1968064	30	3.55085	-. 0252158	. 4417443			
45	1.95118	-. 0004895	. 0034598	. 0441861	. 5285045							
4 s	1.01897	. 0002593	-. 0016307	-. 0163023	. 5925486							

$2 n(1) 4 s(2) 3 d(10)-1 s$

STO	Ergn.	$1 s$	25	3 s	45	STO	Expri.	2p	3 p	STO	Expr.	3d
15	29.02366	1.0011288	-. 3809914	. 1551579	-. 0299002	2 F	12.93236	. 9741369	-. 3873900	3d	6.32474	. 5870337
2 s	11.40952	-.0032969	1.0763234	-. 5157297	. 1012067	3p	6.10205	. 0706414	. 6561700	3d	2.63772	. 5589574
3 s	5.47091	. 0017210	-. 0129568	1.1019163	-. 2419127	30	3.79737	-.0260188	. 4508108			
45	2.24755	-. 0006676	.0048649	. 0470905	. 5181990							
4 s	1.20037	. 0003538	-. 0023189	-. 0163957	. 6028833							

TABLE Ia
Approximate AO's for the Monopositive $3 d$ Ions in the Ground State

Sc(II) 4 s(1) 3d (1)-3												
STO	Exan.	15.	2 s	3 s	45	STO	Espan.	2 p	3p	STO	Etpri.	3 d
1 s	20.25465	. 9995570	-. 3545677	. 1353333	-. 0386548	2p	8.47374	. 9673698	-. 3460895	3 d	3.69085	. 4737211
25	7.56340	. 0013126	1.0650924	-. 4718055	. 1373791	3 p	3.93749	. 0943274	. 4725249	3 d	1.57758	. 6608578
3 s	3.50323	. 0003365	-. 0120466	1.0727220	-. 3561030	3 p	2.55304	-. 0394728	. 6119473			
4 s	1.78386	-. 0004193	. 0095697	. 0660940	. 3207686							
45	1.18358	. 0002777	-. 0055845	-. 0224501	. 7596836							
Ti (II) $4 \mathbf{s}$ (1) $3 \mathrm{dd}(2)-{ }^{4} \mathrm{~F}$												
STO	Expm,	1 s	2 s	3 s	48	STO	Expri.	2 p	3 p	STO	Exans.	3d
15	21.22745	. 9997733	-. 3584809	. 1390272	-.0392983	2p	8.96825	. 9689687	-. 3538712	3d	4.04060	. 4937553
2 s	7.98682	. 0006388	1.0671718	-. 4818260	. 1389015	3p	4.15875	. 0900637	. 5156183	3 d	1.76316	. 6370456
3 s	3.73872	. 0005890	-. 0133277	1.0772522	-. 3544943	3 P	2.69436	-. 0376005	. 5724053			
45	1.88264	-. 0005679	. 0097379	. 0656824	. 3486408							
45	1.23108	. 0003702	-. 0055191	-. 0220476	. 7356622							
V (II) 4 s (1) $3 \mathrm{~d}(3)-{ }^{5} \mathrm{~F}$												
STO.	Exen.	15	25	3 s	45	SIO	Expm.	2 p	3 p	STO	Exon.	3 d
1 s	22.20236	. 9999676	-. 3620263	. 1420941	-. 0395348	2 p	9.46630	. 9698768	-. 3602118	3 d	4.37977	. 5056438
2 s	8.41090	. 0000451	1.0689337	-. 4896349	. 1390015	30	4.40091	. 0868681	. 5418743	3 d	1.91866	. 6248758
35	3.96748	. 0007934	-. 0141281	1.0813586	-. 3502201	3 P	2.84228	-. 0358447	. 5491370			
4 s	1.95536	-. 0006705	. 0096899.	. 0655514	. 3826248							
45	1.27004	. 0004235	-. 0054277	-. 0223175	. 7037476							
Cr(II) $4 \mathrm{~s}(0) 3 \mathrm{~d}(5)-{ }^{6} \mathrm{~S}$												
STO	Expon.	15	2 s	3s		510	Expn.	2p	32	510	Expn.	3 d
1 s	23.20663	. 9999921	-. 3616727	. 1446131		2p	9.94849	. 9724792	-. 3603961	3 d	4.44657	. 5395503
25	8.72816	-. 0001123	1.0807512	-. 5094661		3p	4.58254	. 0784189	. 5972150	3 d	1.82522	. 6103503
3 s	4.53650	. 0021464	-. 0514760	. 8440391		3 p	2.85640	-. 0306498	. 5010369			
3 s	3.01955	-. 0015816	. 0287665	. 3035838								
Mn(II) 4s(1) 3d(5)- ${ }^{\text {S }}$												
STO	Expon.	1 s	25	3 s	4 s	570	Exan.	$2 p$	3 p	STO	Expm,	3d
$1 s$	24.15151	1.0003385	-. 3681926	. 1469492	-. 0399475	2 p	10.45755	. 9715133	-. 3701827	3d	5.01856	. 5249347
25	9.25771	-. 0010627	1.0721060	-. 5012886	. 1391170	30	4.88859	. 0806023	. 5847597	3d	2.19945	. 6064101
3 s	4.41928	. 0011825	-. 0157231	1.0857892	-. 3438153	3 F	3.11926	-. 0320684	- 5121269			
45	2.16345	-. 0008609	. 0097348	. 0670001	. 3929039							
4 s	1.35867	. 0005276	-. 0051184	-. 0209946	. 6986773							
$\mathrm{Fe}(\mathrm{II}) \mathbf{4 s}(0) 3 \mathrm{~d}(7)-\frac{4}{\mathrm{~F}}$												
STO	Exfli.	13	2 s	3 s		570	Expri.	2p	3 p	STO	Exprs.	3 d
$1 s$	25.16345	1.0003472	-. 3664919	. 1495562		2 p	10,94394	. 9732287	-. 3707305	3 d	5.01093	. 5672051
25	9.53501	-. 0012406	1.0869270	-. 5258144		3	5.09536	. 0745999	. 6207801	3 d	2.02383	. 5879564
35	5.10268	. 0031172	-. 0616870	. 8107006		3p	3.15646	-. 0282142	. 4819982			
35	3.42891	-. 0021862	. 0335532	. 3463447								
$\mathrm{CO}(\mathrm{II}) 4 \mathrm{~s}(0) 3 \mathrm{~d}(8){ }^{-3} \mathrm{~F}$												
STO	Expon.	1 s	2 s	3 s		STO	Expn.	22	3 p	STO	Expon.	3 d
1 s	26.14151	1.0005120	-. 3687090	. 1516 A 01		2	11.43967	. 9738117	-. 3749117	3d	5.2685?	. 5817647
2 s	9.94186	-. 0017573	1.0892595	-. 5323432		3 P	5.33061	. 0726929	. 6392519	3 d	2.10270	. 5772596
3 s	5.36702	. 0035416	-. 0648798	. 8070806		30	3.29093	-. 0271680	. 4652874			
3 s	3.60808	-. 0024414	.0348882	. 3535486								
$\mathrm{Ni}(\mathrm{II}) 4 \mathrm{~s}(\mathrm{O}) 3 \mathrm{~d}(9) \mathrm{C}^{\mathbf{2}} \mathrm{D}$												
STO	Exp1.	15.	25	3 s		STO	Expor.	2 p	3 p	STO	Exprn.	3 d
1 s	27.12053	1.0008101	-. 3704995	. 1535130		2 p	11.94061	. 9736474	-. 3788862	3 d	5.55889	. 5880140
2 s	10.35196	-. 0026595	1.0913118	-. 5376071		3 p	5.61418	. 0719787	. 6345057	3 d	2.20920	. 5717878
35	5.63008	. 0039411	-. 0673173	. 0029559		3 p	3.46224	-. 0264130	. 4718336			
3 s	3.78046	-. 0026690	. 0358501	. 3608330								
$\mathrm{Cu}(\mathrm{II}) 4 \mathrm{~s}(0) 3 \mathrm{~d}(10)-{ }^{1} \mathrm{~S}$												
STO	Expri.	1 s	25	3 s		ST0	Expon.	2p	3 p	STO	Expon.	3d
$1 s$	28.08829	1.0008219	-. 3739796	. 1550592		2 p	12.43275	. 9743814	-. 3814575	3 d	5.83709	. 5956689
25	10.82224	-. 0026077	1.0859330	-. 5349431		30	5.83173	. 0699950	. 6555346	3 d	2.31356	. 5647968
3 s	5.64437	. 0032259	-. 0476396	. 9437858		30	3.57586	-. 0254377	. 4523569			
3 s	3.45447	-. 0020157	. 0237173	. 2183469								
570	Expn.	15	25	35	45	570	Expan.	20.	3 p	STO	Expr.	3 d
15	29.02896	1.0011078	-. 3801716	. 1553628	-. 0355999	2 p	12.94168	. 9732665	-. 3876015	3 d	6.42013	. 5706462
25	11.38684	-. 0032579	1.0772018	-. 5186497	. 1212039	3 p	6.15888	. 0723212	. 6302690	3 d	2.70716	. 5723383
3 s	5.50446	. 0018508	-. 0158684	1.0965211	-. 2890584	3 p	3.85944	-.0266395	. 4760219			
45	2.50374	-. 0009978	. 0078289	. 0619972	. 4096293							
4 s	1.49277	. 0005712	-. 0041604	-. 0212596	. 6834154							

TABLE Ib
Approximate AO’s for the Dipositive $3 d$ Ions in the Ground State

Sc(III) 3dili- ${ }^{\text {2 }}$ D											
S30	Expn.	15	28	35	520	Expn.	20	38	ST0	Expon.	3a
15	20.27847	. 9993787	-. 3514448	. 1362421	2 p	8.50212	. 9634774	-. 3468956	3d	3.93039	. 4257783
25	7.48046	. 0018555	1.0745049	-. 4868996	3 p	4.09370	. 0990353	. 3884056	3 d	1.74692	. 6937778
3 s	3.90254	. 0009323	-. 0511446	. 7927932	\%	2.65106	$-.0393357$. 6931347			
3s	2.70730	-. 0009196	. 0320320	. 3372957							
Ti (III) $3 \mathbf{d}$ (2) $-{ }^{3} \mathrm{~F}$											
Sto	Expn.	19	2 s	35	S50	Expr.	2 p	3	STO	Expn.	3d
1 s	21.25754	. 9995753	-. 3545878	.1399105	29	8.99792	. 9650299	-. 3546261	3d	4.26344	. 4466764
2 s	7.87358	. 0012003	1.0802428	-. 5006001	38	4.33327	. 0950282	. 4205817	3d	1.91802	. 6722521
3 s	4.15159	. 0016520	-. 0634415	. 7179701	35	2.81239	-. 0376467	. 6646025			
3 s	2.98801.	-. 0014226	. 0386370	. 4203779							
V (III) 3 d (3) -F											
570	Expon.	15	2 s	35	510	Expn.	29	39	510	Exgn.	3 d
1 s	22.23513	. 9997798	-. 3576670	. 1430421	$2 p$	9.48934	. 9668585	-. 3609749	3 d	4.57328	. 4649071
2 s	8.27526	. 0005267	1.0842872	-. 5111203	38	4.55102	. 0906804	. 4611621	$3{ }^{3}$	2.05853	. 6555985
3 s	4.45040	. 0022849	-. 0697609	. 6975754	3p	2.95097	-. 0358772	. 6278169			
3 s	3.19162	-.0018350	. 0413191	. 4470924							
Cr (III) 3d 4) - ${ }^{5} \mathrm{D}$											
510	Expr.	15	2 s	3 s	STO.	Ergn.	2 p	3p	STO	Eqn.	3 d
$1 s$	23.21374	. 9999646	-. 3605154	. 1457388	$2 p$	9.98103	. 9687686	-. 3653014	3 d	4.87331	. 4807584
2 s	8.68063	-.0000730	1.0872802	-. 5195754	$3 p$	4.72510	. 0877190	. 5117448			
3 s	4.71971	. 0027702	-. 0733294	. 7015268	$3 p$	3.07239	-.0355337	. 5793565			
35	3. 36058	-. 0021247	. 0424202	. 4484696							
Mn(III) $3 \mathrm{dd}(5)-{ }^{6} \mathrm{~S}$											
570	Exan.	15	25	3 s	510	Expri.	2p	3 c	STO	Expn.	32
15	24.19582	1.0001379	-. 3625815	. 1480312	${ }^{2}$	10.47213	. 9698194	-. 3104478	3 d	5.18183	. 4918734
2 s	9.05791	-. 0006683	1.0943468	-. 5302621	3 p	4.97773	. 0834444	. 5351121	3 d	2. 32361	. 6316458
3 s	5.13342	. 0034792	-.0860335	. 6109423	3 p	3.20362	-. 0327904	. 5600939			
35	3.65270	-. 0025745	. 0476416	. 5468531							
Fe (III) $3 \mathrm{~d}(6) \sim^{5} \mathrm{D}$											
510	Expon.	1 s	25	3 s	520	Expri.	2p	3 p	STO	Expri.	3 d
15	25.17144	1.0003243	-. 3652802	. 1503885	2p	10.96561	. 9708123	-. 3749026	3 d	5.43793	. 5099828
25	9.47752	-. 0012474	1.0946099	-. 5357521	3	5.20454	. 0806727	. 5627340	3 d	2.39908	.6188933
ds	3.32616	.0038367	-. 0838093	-6648961	30	3,33644	-.0314396	. 5349621			
35	3.75962	-. 0027711	. 0461409	. 4959891							
Co(III) $3 \mathrm{~d}(7)-{ }^{4} \mathrm{~F}$											
STO	Expn-	1 s	2 s	35	Sm	Expn.	2p	3p	smo	Expr.	3 A
15	26.14799	1.0005011	-. 3677610	. 1522803	2 p	11.45646	. 9719916	-. 3780709	3 d	5.74378	. 5171936
25	9.89541	-. 0017937	1.0952228	-. 5398994	3 p	5.41009	. 0777311	. 5955011	3 d	2.51863	. 6136718
35	5.53954	. 0041923	-. 0823765	. 6970310	3 P	3.44749	-. 0300822	. 5044024			
35	3.88333	-. 0029594	. 0449915	. 4661719							
Ni (III) $3 \mathrm{~d}(8)-{ }^{3} \mathrm{~F}$											
SID	Expr.	$1 s$	2 s	36	510	Expn.	2 p	30	STO	Expn.	30
1 s	27.12882	1.0006502	-. 3695249	. 1541782	2 p	11.95456	. 9721735	$-.3820283$	3d	5.99611	. 5319372
25	10.28700	-. 0022 e 24	1.0990546	-. 5473537	3 p	5.68088	. 0761302	. 6001358	3 d	2.59660	. 6029275
35	5.85838	. 0046320	-.0881950	. 6748267	3p	3.60412	-. 0288599	. 5020410			
3 s	4.09136	-. 0032051	. 0470205	. 4937795							
$\mathrm{Cu}(\mathrm{III}) 3 \mathrm{Sa}(9)-{ }^{2}$											
STO	Expan.	1 s	2 s	35	S10	Expn.	20	3 P	STO	Expn.	3 d
1s	28.10956	1.0008187	-. 3710419	. 1557653	2 p	12.44599	. 9729974	-. 3646236	3 d	6.25146	. 5444223
2 s	10.66651	-.002861B	1.1046500	-. 5550828	3 P	5.89977	. 0739163	. 6223219	3d	2.68766	. 5928065
35	6.24700	. 0052573	-. 0970499	. 6194815	4 p	3.72444	-. 0277773	. 4815242			
35	4.35458	-. 0035567	. 0500141	. 5549657							
Zn(III) 3d(10)- ${ }^{1} \mathrm{~S}$											
58	Expn.	15	2 s	3 s	STO	Encti,	2p	3 p	STO	Exph.	3d
15	29.08590	1,0009708	-. 3730768	. 1572408	22	12.94786	. 9726636	-. 3876630	3 d	6.52815	. 5523358
2 s	11.08774	-. 0033114	1.1041980	-. 5575389	3 p	6.20008	. 0734295	. 6102452	3 d	2.79240	. 5864676
3 s	6.44329	. 0055026	-. 0941057	-6550059	3 p	3.90869	-. 0269779	. 4952094			
3 s	4.46549	-.0036947	. 0484329	. 5278991							

tors w_{i} and W_{i} (Eqs. (3) and (14), respectively) equal to unity. Results for mono-, di-, and tripositive ions appear in Tables la, Ib , and Ic, respectively.

The simulation process has been accomplished satisfactorily, as the overlap integrals between practical and reference AO's show. Such integrals, averaged over the pe-

TABLE Ic
Approximate AO's for the Tripositive $3 d$ Ions in the Ground State

riod, appear in Table II. They are always greater than 0.999 . Valence AO's $3 p$ and $4 s$ are particularly well reproduced, with overlaps larger than 0.99995 and 0.9998 , respectively. As observed by Richardson et al. (6), the quality of this simulation increases with the oxidation state.

The optimum orbital exponents show a linear correlation with the nuclear charge Z. This correlation, particularly good for exponents of the inner STOs, indicates that the regularity of the Hartree-Fock AO's with Z is maintained in the reduced bases.

TABLE II
Values of the Overlap Integrals, Averaged over the Period, between the Approximate and Reference AO's

AO	$M(\mathrm{I})$	$M(\mathrm{II})$	$M(\mathrm{III})$	$M(\mathrm{IV})$
$1 s$	0.99994	0.99995	0.99995	0.99996
$2 s$	0.99954	0.99955	0.99957	0.99963
$3 s$	0.99964	0.99975	0.99978	0.99973
$4 s$	0.99990	0.99995	-	-
$2 p$	0.99972	0.99972	0.99974	0.99978
$3 p$	0.99997	0.99997	0.99997	0.99996
$3 d$	0.99922	0.99923	0.99959	0.99979

Evaluation of the Reduced Bases

3d Functions

Besides the overlap integrals in Table II, we will present the results of two different

Fig. 1. Relative errors in the calculation of the expectation values $\left(3 d\left|r^{n}\right| 3 d\right), n=-2,1,2,3$. Note: Subscripts x and o stand for reduced and reference AO's, respectively.
tests on the quality of the simulation process for the $3 d \mathrm{AO}$'s. The first one refers to the one-electron integrals $\left\langle r^{n}\right\rangle(n=-2,1,2$, and 3). In Fig. 1 we plot the relative error $\left(\left\langle r^{n}\right\rangle_{\mathrm{x}}-\left\langle r^{n}\right\rangle_{0}\right) /\left\langle r^{n}\right\rangle_{0}$, where subscripts x, o refer to practical and reference AO's, respectively.

The errors associated with the operators r^{-2} and r^{3} measure the discrepancies between reduced and reference AO's in the regions near to the nucleus and far apart from it, respectively. When the criterion of maximum overlap is followed, these regions are less accurately reproduced than the segment around the maximum of the radial distribution. Accordingly, the relative error of $\langle r\rangle$ is noticeably smaller. Peaks at the positions of Cr and Cu in Fig. 1 correspond to changes in electronic configuration ($4 s^{2} 3 d^{n} \rightarrow 4 s^{1} 3 d^{n+1}$). Apart from these peaks, the relative errors tend to increase

Fig. 2. Relative errors in $\langle 3 d| r^{n}|3 d\rangle$ versus the oxidation state of the manganese ions.

TABLE III
Lower $d-d$ Electronic Transitions $\left(\mathrm{cm}^{-1}\right.$) of V(IV), Cr(IV), and Fe(IV), as Compared with the Reference Basis (First Row) and the

Reduced Basis (Second Row)

$V(I V) 3 d^{2}-3{ }^{3}$		$\mathrm{Cr}(\mathrm{IV}) 3 d^{3}-{ }^{4} \mathrm{~F}$		Fe (IV) $3 d^{5}-6 \mathrm{~S}$	
Transition	ΔE	Transition	ΔE	Transition	ΔE
${ }^{3} \mathbf{F} \rightarrow{ }^{1} \mathrm{D}$	13.782	${ }^{4} \mathrm{~F} \rightarrow{ }^{4} \mathrm{P}$	17.653	${ }^{6} \mathrm{~S} \rightarrow{ }^{4} \mathrm{G}$	37.934
	13,812		17,702		38.078
	10,536		13.758		32,281
$\rightarrow{ }^{1} \mathrm{G}$	21,498	$\rightarrow{ }^{\mathbf{2}} \mathbf{P}$	23,824	$\rightarrow{ }^{4} \mathbf{P}$	43,856
	21,546		23,889		44,025
	17,968		18.919		35,297
$\rightarrow{ }^{3} \mathrm{P}$	16,534	$\rightarrow{ }^{2} \mathbf{G}$	17,940	$\rightarrow{ }^{4} \mathrm{D}$	47,186
	16.573		17.988		47,363
	12,776		14,699		38,865
$\rightarrow{ }^{\text {'S }}$	53,198	$\rightarrow{ }^{2} \mathrm{H}$	23,824	$\rightarrow{ }^{4} \mathrm{~F}$	63,681
	53,313		23,889		63,921
	42,039		20,658		52,715
		$\rightarrow{ }^{2} \mathrm{D}$	25,928	$\rightarrow{ }^{2} \mathrm{I}$	54,086
			25,998		54,294
			20,112		47,085
		$\rightarrow{ }^{2} \mathrm{~F}$	41,478	$\rightarrow{ }^{2} \mathrm{H}$	66,617
			41,591		66,873
			33,899		56,229

Note. Third-row entries are experimental values, Ref. (I2a) for V(IV) and $\mathrm{Cr}_{\text {(IV }}$), and Ref. (I2b) for $\mathrm{Fe}(\mathrm{IV})$.
slowly from left to right in the period. Furthermore, these relative errors clearly decrease when the oxidation number increases. This effect is depicted in Fig. 2.

The second test refers to the behavior of the $d-d$ repulsion integrals. As examples, we present in Table III the lower $d-d$ transition energies of the $\mathrm{V}(\mathrm{IV}), \mathrm{Cr}(\mathrm{IV})$, and

TABLE IV
Kinetic Plus Nuclear Attraction Energy of the AO's of the Fe Atom ($\left.4 s^{2} 3 d^{6}\right\}^{5}$ D State (Atomic Units)

Atomic orbital	This work	Clementi-Roetti ${ }^{a}$	Difference
$1 s$	-337.62635	-337.58483	0.04152
$2 s$	-82.54069	-82.69238	-0.15169
$3 s$	-31.81308	-31.85502	0.05194
$4 s$	-9.33421	9.35900	0.02479
$2 p$	-81.81697	-82.01925	0.20228
$3 p$	-29.96868	-29.95723	-0.01145
$3 d$	-24.76088	-24.86904	0.10816

[^0]Fe(IV) ions, computed with the AO's reported in this work as well as with the corresponding sets of Clementi and Roetti. The differences are always very small: smaller than $120 \mathrm{~cm}^{-1}$ for $\mathrm{V}(\mathrm{IV})$ and $\mathrm{Cr}(\mathrm{IV})$, and $260 \mathrm{~cm}^{-1}$ for Fe (IV). These discrepancies are negligible when compared with the separation between the theoretical spectrum (reference basis) and the observed one (12). Accordingly, we can say that the reduced basis sets reproduce the theoretical spectrum faithfully.

s and p Functions

In Table IV we present the values of $T+$ V (kinetic plus nuclear attraction energy), computed with the reduced and reference bases, for the AO's of the Fe atom in the ground state. The worse cases correspond to the $2 s$ and $2 p$ AO's. Valence $3 p$ and $4 s$ AO's are very well reproduced.

In Table V we collect a set of interaction energies of pairs of electrons, as defined by Slater (13). They correspond to valencevalence electronic repulsions for the Fe atom in the ground state. The performance of the reduced set is very good, particularly in the case of the $4 s-4 s$ repulsion. Analogous results are found for other elements. The performance is still better for ions.

All these results show that the reduced basis sets presented in this paper are very good approximations to the high-quality ba-

TABLE V
Spherically Averaged Interelectronic
Interactions for the Fe Atom $\left(4 s^{2} 3 d^{6}-^{5} \mathrm{D}\right.$ State) (Atomic Units)

Interaction	This work	Clementi-Roetti	Diffcrence
$(3 s, 3 s)$	1.10037	1.09979	0.00058
$(4 s, 4 s)$	0.27816	0.27814	0.00002
$(3 p, 3 p)$	1.00265	1.00252	0.00013
$(3 d, 3 d)$	0.84689	0.84568	0.00121
$(3 p, 4 s)$	0.36113	0.36164	-0.00051
$(3 d, 4 s)$	0.35503	0.35538	-0.00035
$(3 p, 3 d)$	0.89341	0.89379	-0.00038

ses of Clementi and Roetti. They have a size appropriate for molecular and solid state calculations involving $3 d$ atoms and ions. Moreover, the reduction method presented here seems to work very well. It could be a useful tool in the problem of reducing atomic or molecular basis sets.

Acknowledgments

One of us (E.F.) wants to thank the Ministerio de Educación y Ciencia (Spain) for a doctoral fellowship. Financial support from the Comision Asesora para la Investigación Cientifica y Técnica is gratefully acknowledged.

References

1. C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
2. (a) R. E. Watson, MIT Tech. Report No 12, MIT, Cambridge, Mass., 1959; (b) E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
3. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965); S. Huzinaga and Y. Sakai, J. Chem. Phys. 50,

1371 (1969); A. J. Wachters, J. Chem. Phys. 52, 1033 (1970); Y. Sakai, H. Tatewaki, and S. Huzinaga, J. Comput. Chem. 3, 6 (1982).
4. E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
5. W. Heijser, E. J. Baerends, and P. Ros, J. Mol. Struct. 63, 109 (1980).
6. J. W. Richardson, W. C. Nieuwpoort, R. R. Powell, and W. F. Edgell, J. Chem. Phys. 36, 1057 (1962); J. W. Richardson, R. R. Powell, and W. C. Nieuwpoort, J. Chem. Phys. 38, 796 (1963).
7. B. L. Kalman, J. Chem. Phys. 54, 1841 (1971).
8. L. Adamowicz, Int. J. Quantum Chem. 19, 545 (1981); L. Adamowicz and E. A. McCullough, JR., Int. J. Quantum Chem. 24, 19 (1983).
9. P. O'D. Offenhartz, "Atomic and Molecular Orbital Theory," p. 338, McGraw-Hill, New York, 1970.
10. C. C. J. Roothaan and P. S. Bagus, "Methods in Computational Physics," Vol. 2, p. 47, Academic Press, New York, 1963.
11. M. J. D. Powell, Comput. J. 7, 155 (1964).
12. (a) S. Bashkin and J. O. Stoner, Jr., "Atomic Energy Levels and Grotrian Diagrams," Vol. III, North-Holland, Amsterdam, 1981; (b) J. O. Ekberg and B. Edlén, Phys. Scr. 18, 107 (1978).
13. J. C. Slater, "Quantum Theory of Atomic Structure," Vol. II, p. 286, McGraw-Hill, New York, 1960.

[^0]: ${ }^{a}$ Ref. (2b).

